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Kill(ing) your idols

Tenemos que reconocer que como especie sentimos un muy especial atractivo a aquello que no
somos capaces de comprender. Quedamos, por ejemplo, maravillados con la sorpresa que nos
produce un truco de magia. Luego, cuando nos explican el cómo, ya no era para tanto, aunque
la mayoŕıa de las veces es mucho más maravilloso ese fino mecanismo que hace que todo parezca
mágico1. Podŕıamos decir, que encontramos más placer en el ”engaño” que en el entendimiento.
Nos encanta relacionar aquello que se escapa a nuestra comprensión, con el misticismo. Solemos,
con frecuencia, achacar a los deseos, claros u oscuros, de algún dios, de algún ente superior, la
perfección del mecanismo al que atienden ciertos comportamientos que no sabemos explicar.
Esto ha sucedido siempre y, por supuesto, sigue sucediendo a d́ıa de hoy, en el evolucionado
siglo XXI.

Si hay algo dentro de las matemáticas, que se haya hecho popular por esta razón, es todo aquello
relacionado con la proporción áurea. El número de oro, y todo lo que de alguna manera se pueda
vincular con él, ha estado históricamente ligado a conceptos subjetivos, mı́sticos y religiosos.
La sucesión de Fibonacci, la espiral áurea y la propia proporción, a causa de sus innumerables
propiedades, han sido siempre causa de sorpresa, asombro y maravilla, y esto ha derivado en
que su existencia se asocie a algo más poderoso que lo humano, es decir, a lo divino. Ya Luca
Pascioli, alrededor del 1500, etiquetó a esta razón como ”divina proporción” arguyendo para
ello 5 razones:

(1) la proporción es única como dios es único;
(2) la proporción se define a partir de tres segmentos de recta al igual que la santa trinidad;
(3) la proporción es inconmensurable (irracional) como dios es inconmensurable (¿irracional?);
(4) la proporción tiene propiedades de autosimilaridad que se relacionan con la omnipresencia

de dios; y
(5) la proporción está muy presente en el dodecaedro **es con este sólido con el que (según

los platónicos) se representa la quintaesencia (digamos que según Platón, la quintaesen-
cia es el alma del universo) que representa la existencia de dios**.

¿Cómo se define la proporción? Lo más sencillo aqúı es dar la definición que aparece en
los Elementos de Euclides: ”Se dice que una recta ha sido cortada en extrema y media razón
cuando la recta entera es al segmento mayor como el mayor es al menor”. Esto es sencillamente,
que si cortamos una recta en dos segmentos debe cumplirse que

Longitud Segmento Mayor

Longitud Recta
=

Longitud Segmento Menor

Longitud Segmento Mayor

que podemos traducir en que si tenemos dos segmentos de longitudes a y b (a > b), entonces

a

a+ b
=

b

a
Una definición inocente y un juego geométrico casi recreativo. Cabe recordar, que en la antigua
Grecia, una proporción era a menudo representada por la progresión que generaba. Aśı, si deno-
tamos por ϕ = a

a+b
= b

a
(es decir, la razón áurea), esta misma proporción podŕıa definirse como

1En la magia, la magia no existe. En matemáticas, tampoco. Ambas son cuestión de práctica. Mucha práctica.
Mucha mucha práctica. Conocer el truco no le quita la magia a la magia. Conocer el truco le da su sentido a la
matemática. Pasen y vean a qué me refiero: https://youtu.be/GmwT7L0hToQ.

https://youtu.be/GmwT7L0hToQ


la progresión geométrica que genera: 1, ϕ, ϕ2, ϕ3, . . ..

Y ahora Fibonacci. Leonardo da Pisa vivió rondando el 1200 (300 años antes de que Pascioli
se flipara con lo de ”divina”) y, cosas de la vida, tuvo mucho roce con culturas árabes, de donde
aprendió muchas cosas (que esta gente tráıa sabidas principalmente de la India) y gracias a eso
los occidentales dimos un estirón en esto de las matemáticas. Su contribución más importante
es introducir el sistema decimal en Europa. Sin embargo, por lo que su nombre suena y resuena,
es por una sucesión (que también era ya conocida en la India, aunque esto es lo de menos)
que ha terminado llevando su nombre. En el Liber Abaci, Fibonacci propone un problema, de
nuevo casi de forma recreativa, sobre la cŕıa de conejos. Y es este problema el que lo ha tráıdo
a la fama. No entraremos en detalles sobre el problema y su solución (ya está bastante trillado,
verdad?). La cuestión es que, la sucesión de Fibonacci (parejas de conejos a lo largo del tiempo),
quedaŕıa como

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Esta sucesión se genera a partir de dos semillas o valores iniciales, 0, 1, y cada término de la
sucesión se obtiene sumando los dos inmediatamente anteriores. Formalmente tendŕıamos F0 = 0

F1 = 1
Fn = Fn−1 + Fn−2

La sucesión de Fibonacci es tremendamente famosa por tener muchas propiedades, en un prin-
cipio, recreativas. Por ejemplo,

Fn =
Fn−2 + Fn+1

2
(1)

que dice que hacer el promedio de dos términos de la sucesión que estén separados por tres grados
de distancia, nos da un segundo grado desde el menor; algo aśı como, 2+8

2
= 5 ó 8+34

2
= 21.

Otra,

F0 + F1 + F2 + F3 + . . . + Fn = Fn+2 − 1 (2)

que viene a decir que sumando todos los términos de la sucesión hasta uno arbitrario, y sumamos
uno al resultado, nos dará otro término de la sucesión (el que hace dos). Algo aśı como,

1 + 1 + 2 + 3 + 5 = 13− 1

ó,

1 + 1 + 2 + 3 + 5 + 8 + 13 = 34− 1

¿Hay más? A montones,

F0 − F1 + F2 − F3 + . . . + (−1)nFn = (−1)nFn−1 − 1

F1 + F3 + F5 + . . . + F2n−1 = F2n

F0 + F2 + F4 + F6 + . . . + F2n = F2n+1 − 1

F 2
0 + F 2

1 + F 2
2 + F 2

3 + . . . + F 2
n = FnFn+1

F0F1 + F1F2 + F2F3 + F3F4 + . . . + F2n−1F2n = F 2
2n

F 2
n + F 2

n+1 = F2n+1

F 2
n+2 − F 2

n = F2n+2

F 2
n+2 − F 2

n+1 = FnFn+3

. . .



¿Por qué es tan famosa la sucesión de Fibonacci? Ninguna de estas propiedades le hubiera
dado a la sucesión de Fibonacci la notoriedad que tiene (y ha tenido siempre) si no fuera porque,
tachan!!!

lim
n→∞

Fn+1

Fn

= ϕ.

Esto no es otra cosa que decir que la sucesión formada por el cociente entre dos términos
consecutivos de la sucesión de Fibonacci se aproxima, a la razón áurea, es decir, que

1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
, . . . −→ ϕ

(nótese aqúı que nuestro interés está en los cocientes para n indefinidamente grande, por lo
que el cociente entre los dos primeros términos no esté definido aritméticamente no es ningún
problema aqúı).

¿Por qué esta propiedad eclipsa a los cientos de propiedades que tiene esta sucesión?
No lo se. Mi hipótesis es que quizá, nos resulta intuitivo, que la sucesión, tal cual se define, es
decir, de forma aditiva, pues deriva en este tipo de propiedades; al fin y al cabo, lo que envuelven,
son sumas y restas. Por ejemplo, simplemente partiendo de la definición Fn = Fn−1 + Fn−2, y
sumando a ambos lados de la igualdad, Fn, nos quedará, 2Fn = Fn+Fn−1+Fn−2, pero además,
como Fn+Fn−1 = Fn+1, pues nos queda que, 2Fn = Fn+1+Fn−2, y de ah́ı tenemos la propiedad
que en (1) interpretábamos como un promedio de términos de la sucesión. Lo que un poco
más arriba, anotamos como propiedad (2), intuimos que será bastante sencillo de demostrar por
inducción, y si no conocemos ésta herramienta, pues por la cuenta la vieja también nos valdrá;
sustituyendo sucesivamente valores en la expresión de la derecha del igual y simplificando la
expresión. Y aśı con todas. Entretenido pero sencillo. Sin embargo, quizá no nos resulte tan
intuitivo, que el ĺımite de los cocientes acabe en ϕ. Esto es lo que quiero esforzarme en pensar.
Pero si soy completamente honesto, no puedo dejar de sospechar, que la inercia al misticismo
de la que hablábamos al principio, es la que hace que se nos pongan los pelos de punta, justo
cuando vemos ϕ, y no antes.

Generalización. Todas estas propiedades que acabamos de nombrar, no son exclusivas de la
sucesión de Fibonacci, sino que se deben a ésta forma aditiva en que es definida la sucesión. Es
decir, la sucesión de Fibonacci es solo un caso particular, y en general, cualquier sucesión de
la forma an = an−1 + an−2, cumplirá con estas propiedades, independientemente de los valores
“semilla” que decidamos para a1 y a2 (las dos pruebas arriba para las propiedades (1) y (2) en
ningún momento han necesitado de valores iniciales; y lo mismo sucede para todas las demás).
A cualquier sucesión definida de esta manera se le suele denominar sucesión áurea, y los nombres
particulares vienen cuando definimos valores iniciales. Los más conocidos son, como ya hemos
dicho, los que generan la sucesión de Fibonacci (a1 = 1 y a2 = 1), pero también goza de cierta
fama la sucesión de Lucca (a1 = 1 y a2 = 3). ¿Por qué sucesión áurea? Pues claramente a
causa de la propiedad estrella, porque siempre sucede, recalcamos que independientemente de
los valores iniciales, que

lim
n→∞

an+1

an
= ϕ.

**Quizá has notado algo raro, en cuanto al recorrido de los sub́ındices, al generalizar desde la
sucesión de Fibonacci, Fn, a esta sucesión áurea, an. Da igual, ¿no?.**

Paréntesis. Podemos determinar un valor aritmético para esta proporción traduciendo la
igualdad,

a

a+ b
=

b

a
,



a un lenguaje algebraico que nos resulte útil para nuestro interés. Algo aśı, como crearnos la
escala de un mapa. a es a a+ b lo que b es a a, y para hacer la escala diremos, lo que 1 es a x,
por lo tanto, reescribimos b = 1 y a = x, de donde

x

1 + x
=

1

x
.

Multiplicando en cruz, obtenemos

x2 = 1 + x,

que da lugar a la ecuación de segundo grado que resuelve el valor aritmético de nuestra idolatrada
proporción

x2 − x− 1 = 0.

Pero no nos interesa esta ecuación, sino más bien nos quedaremos en la expresión x2 = 1 + x.
Como hemos quedado en llamar a nuestra razón dorada ϕ, y además, resulta que ϕ es la solución
de esta ecuación, pues sucede que ϕ2 = ϕ + 1. Ahora, simplemente multiplicando ambos lados
de la igualdad por ϕ, obtendremos ϕ3 = ϕ2 + ϕ. Si procedemos recursivamente, es obvio que

ϕn = ϕn−1 + ϕn−2.

Por lo tanto, la progresión del tipo geométrico (cada término se obtiene multiplicando su ante-
rior por una razón), que dećıamos que los griegos ya utilizaban para describir la proporción, ha
resultado ser también, una sucesión de las del tipo que hemos llamado áureas, y que se puede
generar aditivamente.

¿Hay conexión?. Claro, ya hemos dicho que la sucesión de Fibonacci es un caso particular
de sucesión áurea. Esto lo podemos deducir, además, desde otro punto de vista. ¿Qué pasa
si intentamos obtener directamente el valor de an a partir de los valores de las semillas a1 y
a2?. Procedemos recursivamente. Sabemos que an = an−1 + an−2, por lo que a3 = a2 + a1,
y a4 = a3 + a2. Sustituimos el valor de a3 de la primera igualdad en su correspondiente de
la derecha de la segunda igualdad, por lo que a4 = (a2 + a1) + a2 = 2a2 + a1. Otra vez.
Como a5 = a4 + a3 y ya tenemos a4 y a3 en función de las semillas, podemos sustituir y
tenemos a5 = (2a2 + a1) + (a2 + a1) = 3a2 + 2a1. ¿Aun no? Hacemos otra. a6 = a5 + a4 =
(3a2 + 2a1) + (2a2 + a1) = 5a2 + 3a1. Ahora seguro que si. Si necesitas un poco más no te
preocupes, puedes ejecutar un par de pasos más y te vas a dar cuenta de que

an = Fn−1a2 + Fn−2a1.

Ou, yeah!! Aśı que la sucesión de Fibonacci no es más que un caso particular de la sucesión
áurea en el que las semillas son el elemento neutro del producto!!! **cuidado, las semillas de la
sucesión áurea, la de términos an**.

Volvamos a ϕ2 = ϕ + 1. De aqúı surgen dos propiedades maravillosas de la proporción
áurea. La primera es, que si aplicamos ráız cuadrada a ambos lados de la igualdad tenemos
que ϕ =

√
1 + ϕ, y si ah́ı vamos sustituyendo el ϕ de la izquierda en el ϕ de la derecha tenemos

que ϕ =
√

1 +
√
1 + ϕ, y otra vez ϕ =

√
1 +

√
1 +

√
1 + ϕ, y otra, y otra, y otra,. . .

ϕ =

√√√√
1 +

√
1 +

√
1 +

√
1 +

√
1 + . . .

De esta propiedad nos olvidaremos en este art́ıculo. Nos vamos a centrar en la que viene a
continuación. La construimos de forma muy parecida, pero en lugar de aplicar ráız cuadrada,
dividimos ambos lados de la igualdad por ϕ, de forma que ϕ = 1 + 1

ϕ
. Igual que acabamos de



hacer con la ráız, vamos sustituyendo el ϕ de la izquierda en el ϕ de la derecha, y lo hacemos
indefinidamente, y obtenemos

ϕ = 1 +
1

1 +
1

1 +
1

1 +
1

1 + . . .

Esto es belĺısimo, pero es mucho más. Es la expresión de ϕ como fracción continua. Una fracción
continua, que además esta formada únicamente por unos, lo que implica que ϕ es el número ir-
racional que más lentamente converge a un número racional, es decir, que ϕ es el número más
irracional.

¿Por qué an+1

an
−→ ϕ? Hemos visto que la progresión geométrica generada por ϕ se puede

obtener también de forma aditiva, consiguiendo cada término an, a partir de las semillas a0 = 1

y a1 = ϕ. Obviamente, para este caso particular sucede que limn→∞
an+1

an
= limn→∞

ϕn+1

ϕn = ϕ.

¿Que pasa para el caso general? Utilizando la definición de an, tenemos que an+1 = an + an−1,
de donde

an+1

an
=

an + an−1

an
= 1 +

an−1

an
= 1 +

1
an

an−1

y ahora debemos proceder de forma análoga sobre la fracción an
an−1

. Tenemos de esta manera,

que cuando n se hace indefinidamente grande,

an+1

an
= 1 +

1

1 +
1

1 +
1

1 +
1

. . .

que es la fracción continua que dećıamos representa el valor de ϕ. Si te resulta más sencillo,
puedes construir la fracción continua andando el camino inverso. Puedes empezar con el hecho
de que a2

a1
= 1. Luego puedes hacer

a3
a2

=
a2 + a1

a2
= 1 +

a1
a2

= 1 +
1
a2
a1

= 1 +
1

1
,

y luego pues
a4
a3

=
a3 + a2

a3
= 1 +

a2
a3

= 1 +
1
a3
a2

= 1 +
1

1 + 1
1

,

y aśı hasta que te aburras. De nuevo, en el infinito, te vas a reunir con ϕ.

Juega conmigo. Queda demostrado que la magia no es de la sucesión de Fibonacci, sino de
cualquier sucesión que generemos de forma recursiva, utilizando esta regla aditiva de obtener
cada elemento, sumando los dos inmediatamente anteriores. ¿Quieres probar? Inventa dos
números, digamos el 5 y el 3 (elige los tuyos), y ahora genera tu propia serie de la forma en
que hablamos, en este caso, 5, 3, 8, 11, 19, 30, 49, 79, . . . y después, la serie de cocientes
consecutivos

3

5
,
8

3
,
11

8
,
19

11
,
30

19
,
49

30
, . . .

Toma la calculadora, ve dividiendo, y mira a ver si diera la casualidad de que el resultado se va
aproximando, cada vez más y más, a ϕ. Ah, vaya despiste, ϕ es aproximadamente 1.618.



Más mitos de la sucesión de Fibonacci. Elige cuatro términos consecutivos de la sucesión de
Fibonacci, multiplica los extremos, calcula el doble del producto de los medios, suma los cuadra-
dos de los medios. Tachan!! Obtenemos una terna pitagórica. Bien, esto quizá te parece un
trabalenguas enredado. Vamos a entendernos utilizando los números. Elegimos cuatro términos
consecutivos de la sucesión de Fibonacci arriba. Por simplificar los cálculos 1, 2, 3, 5 pero te
invito a que repitas esto con tu propia elección. Por un lado 1 · 5 = 5, por otro lado 223 = 12, y
por otro 22 + 32 = 13. Y si, sucede que 52 + 122 = 132. Y sucede cualesquiera cuatro términos
que seleccionemos mientras que estos sean consecutivos. Pero según lo dicho hasta ahora, esto
huele a no ser una propiedad exclusiva de la sucesión de Fibonacci. ¿No será esto consecuencia
directa de la forma en que tenemos de construir esta sucesión? es decir, esto se debe a que
an+1 = an + an−1. Simplificando la notación, podemos decir que cuatro términos consecutivos
de la progresión seŕıan x, y, x+y, y x+2y (y ≥ x). El producto de los extremos queda x(x+2y)
y el doble del producto de los medios 2y(x+ y). La suma del cuadrado de los medios quedaŕıa
x2 + (x+ y)2. Tomamos esta última y desarrollamos un poco

y2 + (x+ y)2 = y2 + x2 + y2 + 2xy = y2 + y2 + xy + x2 + xy = y(x+ 2y) + x(x+ y)

. Esto explica otra versión del enunciado que modifica la suma del cuadrado de los medios, por
la suma de los productos de los términos de posición impar y los de posición par (es decir, en
lugar de 22+32 en nuestro ejemplo, haŕıamos 13+25). El objetivo es demostrar que (x(x+2y),
2y(x+ y), x2 + (x+ y)2) forman una terna pitagórica, es decir, la suma del cuadrado de los dos
primeros, da como lugar el cuadrado del tercero. Volvemos a tomar el tercer término y volvemos
a jugar con él, tal y como hemos hecho hace un momento:

y2 + (x+ y)2 = y2 + x2 + y2 + 2xy = x(x+ 2y) + 2y2

Al haber conseguido el primer elemento de la terna en la expresión del tercero, tenemos que
demostrar una expresión relativamente más sencilla,

[x(x+ 2y)]2 + [2y(x+ y)]2 = [x(x+ 2y) + 2y2]2,

ya que al desarrollar el binomio de la derecha la expresión se nos simplificará a

[2y(x+ y)]2 = 2x(x+ 2y)2y2 + 4y4,

y cancelando 22 = 4, e y2 en ambos lados de la igualdad, nos queda

(x+ y)2 = x(x+ 2y) + y2 = x2 + 2xy + y2

Esto nos lleva a que aqúı no pinta nada (o casi nada) Fibonacci y que podŕıamos reescribir el
enunciado de forma más neutra. Por ejemplo.

Elige dos números y obtén su suma y su diferencia (en valor absoluto).
Calcula el producto entre el mayor y el menor.

De los medianos calcula el doble de su producto y también la suma de sus cuadrados.
Magia. Terna pitagórica.

¿No es este enunciado mucho más espectacular? ¡Nos libera de tener que elegir los números de
entre una sucesión concreta pudiendo elegirlos a nuestro antojo!. Entonces, ¿por qué recurrimos
a Fibonacci?

Misticismo matemático & Business is business. Fibonacci vende.

Pero, ¿no encontramos la sucesión de Fibonacci frecuentemente en la naturaleza?
Como hemos visto, la sucesión de Fibonacci es un caso particular de sucesión áurea, y además,
no seŕıa descabellado pensar en que un proceso natural (o no) se propague como esta sucesión se
propaga. En realidad, la sucesión de Fibonacci, nace de un problema que plantea este señor en



el Libber Abaci en 1202 y que resulta muy ilustrativo del trasfondo en este tipo de crecimiento.
El problema dice (casi) textualmente ¿Cuántas parejas de conejos tendremos a fin de año si
comenzamos con una pareja que cŕıa cada mes otra pareja que puede empezar a procrear a
partir de los dos meses de vida? Digamos que una pareja de conejos deja descendencia cada
mes (una pareja de bebes). Esta nueva pareja necesita madurar para poder procrear, y en esto
tarda un mes. Es decir, tenemos una pareja a1 = 1. Un mes para madurar, a2 = 1. Ahora
ya empiezan a procrear, por lo que el siguiente mes tendremos la pareja original y sus hijos,
a3 = 2. Los padres pueden procrear cada mes, pero los hijos están madurando, por lo que
a4 = 3. Ahora tenemos: la pareja original, que sigue procreando, la primera pareja de cŕıas,
que ya ha madurado y puede procrear, y la segunda pareja de cŕıas, demasiado jóvenes, por lo
que a5 = 5. En general, para saber la cantidad parejas que tenemos en un mes n tenemos que
añadir a la cantidad de parejas que teńıamos el mes anterior n− 1, una nueva cantidad de cŕıas
correspondiente a las parejas que son suficientemente maduras como para criar, es decir, las que
tienen al menos dos meses de vida, es decir, las que teńıamos hace dos meses n − 2. Por lo
tanto, an = an−1 + an−2. Todo tiene sentido, salvo que los conejos no procrean de esta manera.
Sin embargo, si resulta ilustrativo de un proceso de expansión en el cual se van acumulando
fuerzas productivas después de esperar cierto tiempo de maduración. Por lo tanto, no ha de
sorprendernos encontrar este tipo de crecimiento en ciertos fenómenos naturales. Eso śı. Muchas
menos veces de lo que la propaganda ha hecho que se perciban en la imaginativa popular. Ya
hemos dicho que los conejos no se reproducen de esta manera.

¿Dónde si?. En el árbol genealógico de un zángano. Sucede que los huevos de las abejas
obreras no fertilizados evolucionan a zánganos, por lo que los zánganos no tienen padre pero si
tienen madre. Pero las hembras si tienen dos progenitores, por lo tanto, un zángano (1) tiene
una madre (1) que tiene un padre y una madre (2), el padre tiene madre y la madre tiene padre
y madre (3), la madre del padre y la madre de la madre tienen ambos madre y padre, pero el
padre de la madre solo tiene padre (5), y si quieres, puedes seguir con este trabalenguas tan
entretenido. Mira:

También sucede, que en filotaxis se ha solido explotar la idea de sucesión de Fibonacci y, cuando
esta falla, sucesión de Lucas (sucesión áurea con las semillas a1 = 1 y a2 = 3). Aqúı, con el
tiempo, se ha demostrado que no es tanto la sucesión, sino su convergencia a la proporción. Ya
hemos visto que el número de oro es el más irracional de todos, el que más lentamente converge
a un número racional.



¿Entonces lo que vemos es el número de oro? La proporción áurea tiene una presencia
significativamente mayor que la sucesión de Fibonacci en la naturaleza. Como acabamos de decir
en el párrafo anterior, se encuentra aproximadamente en el ángulo que forman los tallos de una
planta entre śı, o en las pipas de un girasol o de una piña. En general, suele estar presente en el
proceso de crecimiento de muchas plantas. Esto tiene una explicación perfectamente racional.
Hemos dicho que ϕ es el número más irracional, por lo que cuanto más cerca estemos de esta
proporción, más lejos estaremos de solaparnos (en caso de ser tallos y necesitar de la luz del sol
y del agua de la lluvia) o nos permitirá ocupar el espacio de forma más óptima (si somos, por
ejemplo las pipas en la flor de un girasol). Además, atendiendo a la definición original ”la parte
pequeña es a la grande como la parte grande es a la suma” podemos decir que es el número que
permite mantener la proporcionalidad entre las partes y el todo. Quizá sea por eso tan frecuente
en anatomı́a. El número de oro está presente como proporción en el pentágono, y la simetŕıa
pentagonal está presente en muchos elementos de la naturaleza. Muchas flores tienen 5 pétalos
(diŕıa que es bastante falaz que la cantidad de pétalos de una flor es un número de Fibonacci,
pero allá cada cuál). Las personas tenemos 5 extremidades (si nos colocamos como Vitrubio
quiere, empezaremos a encontrar el número de oro por todas partes). . . de ah́ı, que podamos
seguir encontrando aproximaciones de ϕ, si miramos con los ojos adecuados.

¿Y qué me dices de la espiral dorada? Śı. Vemos espirales logaŕıtmicas por todos lados.
Lo que no vemos son espirales doradas, aunque a menudo confundimos (por nuestro propio pié o
inducidos), espiral logaŕıtmica con espiral dorada. Hemos dicho que ϕ genera una progresión que
es geométrica, y, por definición, una espiral logaŕıtmica es una espiral en la que el radio aumenta
de forma exponencial (geométrica). La espiral dorada vuelve a ser sólo un caso particular, esta
vez, de una espiral logaŕıtmica (la de razón ϕ). El ejemplo más trillado de número áureo en la
naturaleza en forma de espiral es el de la concha del Nautillus. Pues bien, śı que se trata de
una buena aproximación a una espiral logaŕıtmica, pero de razón cercana a 1.2, que queda muy
lejos de cualquier aproximación de ϕ. Hay un libro llamado The curves of life de T.A. Cook que
muestra la extraordinaria presencia de esta espiral (la logaŕıtmica) en la naturaleza. ¿Por qué
decide la naturaleza seguir esta trayectoria? Pues porque cualquier espiral logaŕıtmica tiene dos
propiedades que resulta important́ısimas en este sentido. La primera es, que la superficie delimi-
tada por ángulos iguales, aumenta siempre en la misma proporción (lo que hace que un molusco,
que va haciendo crecer su caparazón a la misma velocidad que va creciendo él, encuentre su casa
exactamente igual en todas las fases de su desarrollo, lo que le permite no desorientarse nunca),
y la segunda, es que es una espiral equiangular (un halcón a la caza desciende en espiral, porque
para mantener la máxima velocidad necesita mantener la cabeza fija, y entonces, para mantener
a su presa siempre a la vista sigue -quizá sin saberlo- esta trayectoria). En ninguno de los dos
ejemplos la espiral tiene por qué ser dorada.

De hecho, ¿sabemos distinguir una espiral dorada? Escribiendo esta entrada me he
cuestionado si realmente somos capaces de distinguir, a simple vista, la proporción. ¿Cuál es
una espiral dorada?



Llegados a este punto espero no haberte roto el corazón. La magia no existe. Las
matemáticas si. Sospecha. Duda. Razona. Kill your idols.

Nota al pié. Todo mi discurso es en contra de presentar propiedades que atienden a razón
como si de trucos de magia se tratase. De presentar la matemática como se presenta la magia,
sin contar el truco. ¿No es más maravilloso contar por qué funciona todo a la perfección? Por
el contrario, mi mente está abierta a admitir (con restricciones eso śı) que la proporción áurea
pueda admitirse como un representante de lo que subjetivamente cada individuo pueda evaluar
o calificar como bello. No ha sido el propósito de este art́ıculo desarticular lo que es subjetivo
y se presenta como subjetivo. Incluso, llegados a este punto, podŕıa recomendar la lectura de
la tesis doctoral de Araceli Casans Arteaga Aspectos estéticos de la divina proporción donde
se presenta un buen muestrario histórico de los distintos puntos de vista sobre este tema y se
discute entorno a esto.


